

WARSAW UNIVERSITY OF TECHNOLOGY

AFTER @ LHC

A fixed-target programme at the LHC for heavy-ion, hadron, spin and astroparticle physics

Daniel Kikoła AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis (Orsay, IPN), D. Kikoła (Warsaw U. of Tech.), J.P. Lansberg, L. Massacrier (Orsay, IPN), M.G. Echevarria (INFN, Pavia), A. Kusina (Cracow, INP), I. Schienbein (LPSC, Grenoble), J. Seixas (Lisbon, IST & LIP, Lisbon), H.S. Shao (Paris, LPTHE), A. Signori (Jefferson Lab), B. Trzeciak (Utrecht U.), S.J. Brodsky (SLAC), G. Cavoto (INFN, Rome & Rome U.), C. Da Silva (Los Alamos), F. Donato (Turin U. & INFN, Turin), E.G. Ferreiro (Santiago de Compostela U. & Santiago de Compostela U., IGFAE & Ecole Polytechnique), I. Hřivnáčová (Orsay, IPN), A. Klein (Los Alamos), A. Kurepin (Moscow, INR), C. Lorcé (Ecole Polytechnique, CPHT), F. Lyonnet (Southern Methodist U.), Y. Makdisi (BNL, C-A Dept.), S. Porteboeuf (Clermont-Ferrand U.), C. Quintans (LIP, Lisbon), A. Rakotozafindrabe (IRFU, Saclay, DPHN), P. Robbe (Orsay, LAL), W. Scandale (CERN), N. Topilskaya (Moscow, INR), A. Uras (Lyon, IPN), J. Wagner (NCBJ, Warsaw), N. Yamanaka (Orsay, IPN), Z. Yang (Tsinghua U., Beijing), A. Zelenski (BNL, C-A Dept.) *Hide*

Jul 2, 2018 - 102 pages

(2018-08-20) IFJPAN-IV-2018-11, JLAB-THY-18-2756, SLAC-PUB-17291 e-Print: <u>arXiv:1807.00603</u> [hep-ex] | <u>PDF</u>

Why a fixed-target experiment at the LHC?

- High luminosities \rightarrow access to rare probes (heavy quarks)
- High precision Heavy-Ion program between SPS and RHIC top energy
- Access to high Feynman x_F domain ($|x_F| = |p_z|/p_{z max} \rightarrow 1$)
- Variety of atomic mass of the target,
- Large kinematic coverage
- Polarization of the target \rightarrow spin physics at the LHC

Physics program

High-x frontier

- Advance our understanding of high-x gluons, antiquark and heavyquark content in the nucleon & nucleus
- AFTER@LHC data → reduce uncertainties on PDFs, astrophysics calculations

The Spin Physics Program

3D mapping of the parton momentum:

- Missing contribution to the proton spin: Gluon and Quark Orbital Angular Momentum L_a and L_a
 - $p+p^{\uparrow} \rightarrow$ (indirect) access to quark L_q , gluon L_g and gluon transverse-momentum dependent PDF
- Determination of the linearly polarized gluons in unpolarized protons

Gluon Spin
 Gluon angular momentum
 Quark Spin
 Quark Angular Momentum

Phys. Rev. Lett. 112, 212001

Heavy-ion collisions

AFTER@LHC

Heavy-ion collisions at

Figure courtesy of Brookhaven National Laboratory

Fixed-target collisions at LHC

Kinematics

• p+p or p+A with a 7 TeV p on a fixed target

$$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \, GeV$$

$$y_{CMS} = 0 \Rightarrow y_{Lab} = 4.8$$

• A+A collisions with a 2.76 TeV Pb beam

$$\sqrt{s} \approx 72 \, GeV$$
$$y_{CMS} = 0 \rightarrow y_{Lab} = 4.3$$

Boost effect \rightarrow access to backward physics

backward physics = large- x_2 physics ($x_F < 0 \rightarrow \text{large } x_2$)

Detector requrements

- Wide rapidity coverage with PID and vertexing capabilities
- Readout rate similar as LHC collider: up to 40 MHz in pp, 300 MHz in pA and 200 kHz in PbA
- Heavy-ion: good detector performance in high-multiplicity events, up to 600 charged tracks per unit of rapidity at $\eta_{lab} \sim 4$

Kinematic coverage: collider vs fixed target

(1) fixed target, $\sqrt{s_{_{NN}}} = 115 \text{ GeV}$; (2) fixed target, $\sqrt{s_{_{NN}}} = 72 \text{ GeV}$; (3) collider mode, $\sqrt{s} = 14 \text{ TeV}$; for $Z_{_{\text{target}}} \sim 0$

Kinematic coverage: collider vs fixed target

LHCb detector

https://lhcb.web.cern.ch/lhcb

(1) fixed target, $\sqrt{s_{NN}} = 115 \text{ GeV}$; (2) fixed target, $\sqrt{s_{NN}} = 72 \text{ GeV}$; (3) collider mode, $\sqrt{s} = 14 \text{ TeV}$; (4) collider mode, $\sqrt{s_{NN}} = 5.5 \text{ TeV}$, (5),(6) $\sqrt{s_{NN}} = 8.8 \text{ TeV}$

How to make fixed-target collisions with the LHC beams?

- Internal (solid or gas) target + existing detector
 - gas target (unpolarized/polarized) and full LHC beam
 - beam splitting by bent-crystal + internal (solid, pol.?) target
 - internal Wire/Foil target (directly in the beam halo)
- Beam extraction by bent-crystal
 - new beam line + new experiment

Under study within the Physics Beyond Collider working group (https://pbc.web.cern.ch) S. Redaelli et al. Proceedings of IPAC2018 Physics Beyond Collider Working Group meeting June 2018: https://indico.cern.ch/event/706741/

SMOG-LHCb: the demonstrator of a gas target

System for Measuring Overlap with Gas

Successful p+Ne, p+Ar, p+He, Pb+Ar data taking

Limitations: Limited luminosities; no p+p baseline; no heavy nuclei yet

Target gas: only noble

Gas target: storage cell

- Dedicated pumping system
- Polarized H⁺ and D⁺ injected in open-end storage cell with polarization P ~80% (requires additional polarized gas target)
- Possible polarized ³He⁺ or unpolarized heavy gas (Kr, Xe)
- Expected L_{int} over a year (for 1 m cell):

– p-H
$$\sqrt{s_{_{\rm NN}}}$$
 = 115 GeV, L_{int} ~ 10 fb⁻¹

- Pb-H
$$\sqrt{s_{NN}}$$
 = 72 GeV, L_{int} ~ 100 nb⁻¹

- Pb-Xe
$$\sqrt{s_{NN}}$$
 = 72 GeV, L_{int} ~ 30 nb⁻¹

Gas jet target

The hydrogen jet polarimeter

- Used to measure the proton beam polarisation at RHIC
- 9 vacuum chambers, 9 stages of differential pumping
- Polarised free atomic beam source (ABS)
- L_{int} (pH) ~ 50 pb⁻¹ per year

Beam splitting by bent-crystal

→ Deflecting the beam halo at 7σ distance to the beam, reduces beam loss → Beam extraction: civil engineering required, new facility with 7 TeV proton beam

→ Beam splitting: intermediate option, could be used with existing experiment W. Scandale, PBC workshop 2016, https://indico.cern.ch/event/523655/contributions/2284521/

Beam splitting by bent-crystal

Typical integrated luminosity over a year (for 5 mm-thick targets):

- p-C collisions at $\sqrt{s_{NN}} = 115 \text{ GeV}$, $L_{int} \sim 6 \text{ nb}^{-1}$
- Pb-W collisions at $\sqrt{s_{_{NN}}}$ = 72 GeV, $L_{_{int}}$ ~ 3 nb⁻¹

A selection of performance studies

Sensitivity studies - assumptions

LHCb-like

 $\sqrt{s_{_{NN}}} = 115 \text{ GeV}, L_{_{int}} (p-H) = 10 \text{ fb}^{-1} / \text{year}$ $\sqrt{s_{_{NN}}} = 115 \text{ GeV}, L_{_{int}} (p-Xe) = 100 \text{ pb}^{-1} / \text{year}$ $\sqrt{s_{_{NN}}} = 72 \text{ GeV}, L_{_{int}} (Pb-Xe) = 30 \text{ nb}^{-1} / \text{year}$ (Ref at same energy: $L_{_{int}} (p-H) = 250 \text{ pb}^{-1} \text{L}^{\text{int}} (p-Xe) = 2 \text{ pb}^{-1}$)

2 < η < 5

Target Z = 0, microvertexing, particle ID, μ ID

ALICE-like

$$\sqrt{s_{_{NN}}} = 72 \text{ GeV}, L_{_{int}} (Pb-Pb) = 1.6 \text{ nb}^{-1} / \text{year}$$

 $\sqrt{s_{_{NN}}} = 115 \text{ GeV}, L_{_{int}} (p-H) = 45 \text{ pb}^{-1} / \text{year}$

 $-0.9 < \eta^{\text{TPC}} < 0.9$

Bent crystal + internal solid target: $Z \sim 0$ + ALICE-like acceptance

Heavy-Ion collisions

Heavy-ion collisions: toward large rapidities

The four scenarios of temperature dependent $\eta T/(\varepsilon+P)$, G. Denicol et al, PRL. 116, 212301

Particle yields and v_N at large rapidities \rightarrow powerful tool to constrain the temperature dependence of the medium shear viscosity

Heavy-ion collisions: toward large rapidities

Particle yields and v_N at large rapidities \rightarrow powerful tool to access the medium shear viscosity and temperature

Rapidity scan of the QCD phase diagram

Larger rapidity \rightarrow larger baryon chemical potential $\mu_{\rm B}$

AFTER@LHC: Comparable μ_B range to the RHIC Beam Energy Scan

Quarkonium in "cold" and "hot" mater studies

Determination of thermodynamic properties of QGP + cold nuclear matter effects with Υ (nS) production in pp, pA, AA

Probing the nuclear structure

Constraining gluon nPDF with heavy quarks

Constraining quark nPDF with Drell-Yan

Large Drell-Yan yields, wide kinematic reach ($x_2 \rightarrow 1$), various targets

Also: ideal test of the extrapolation of initial state effects in pA to AA

Orbital angular momentum of quarks and gluons

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Possible sources of the asymmetry: **Sivers mechanism** \rightarrow correlation between spin and parton k_T

A_N ≠ 0 → non-zero quark/gluon Sivers function → non-zero quark/gluon OAM

• Drell-Yan
$$\rightarrow$$
 access to $f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)$
 $f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)_{Drell-Yan} = -f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)_{Semi-Inclusive DIS}$

• Gluon Sivers effect \rightarrow access via single spin asymmetry of open charm & quarkonia, $J/\psi\text{-}J/\psi,~J/\psi\text{+}\gamma$

Drell-Yan A_N in AFTER

• Precision study of the quark Sivers function with Drell-Yan over a wide kinematic range

AD'AM \rightarrow M. Anselmino, U. D'Alesio, and S. Melis, Adv. High Energy Phys. 2015 (2015) 475040 EIKV \rightarrow M. G. Echevarria, A. Idilbi, Z.-B. Kang, and I. Vitev, Phys. Rev. D89 (2014)

Implementation options under investigation

- LHCb
 - Beam splitting and internal W solid target (with a second crystal) for Electromagnetic Dipole Moment of charmed baryons
 - Polarized storage cell gas target for spin physics
 - Unpolarized storage cell gas target (SMOG2)
- ALICE
 - Beam splitting and internal solid targetsolid target

SMOG2 internal storage cell target

Openable storage cell of 20 cm long attached to the VELO Unpolarized gas via capillary: gas feed tube in the cell center Gas pressure up to 100 × SMOG: P ~ 10⁻⁵ mbar, Formal approval expected this fall, installation in LS2 Luminosties: \mathcal{L}_{p-H} @115GeV = 10/pb, \mathcal{L}_{p-D} @115GeV = 10/pb, \mathcal{L}_{Pb} -Ar@72GeV = 5/nb

Fixed-target setup investigated in ALICE

Beam splitting and internal solid target

- Inside the L3 solenoid
- Pneumatic motion system with two positions (IN and OUT of the beam pipe)

Status and summary

- Reach and unique physics program: large-x frontier, heavy-ion collisions, spin physics program at the LHC
- A fixed-target program at the LHC can be implemented without interfering with the other experiments
- Topic of the Physics Beyond Collider study http://pbc.web.cern.ch/ → LHC fixed target working group
- Ongoing feasibility studies for FT collisions with ALICE and LHCb detectors
- AFTER@LHC Study Group: http://after.in2p3.fr

J/ ψ and Υ in p+p

- Typically 10⁹ charmonia, 10⁶ bottomonia per year
- Unique access to C-even quarkonia ($\chi_{c,b}$, η_c) + associated production
- A_{N} for all quarkonia (J/ ψ , ψ ', χ_{c} , $\Upsilon(nS)$, χ_{b} & η_{c}) can be measured

 $\frac{1}{\mathcal{P}_{\text{eff}}} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

Longitudinal spin transfer D_{LL} to Λ baryons

- Unique rapidity coverage with the ALICE central barrel
- Access to the strange guark polarized PDF at $x \rightarrow 1$

SMOG-LHCb: the perfect demonstrator

Successful p+Ne, p+Ar, p+He, Pb+Ar data taking, good resolution, low BG Limitations: Limited luminosities; no p+p baseline; no heavy nuclei yet

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Available Luminosities				ALICE							
				proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				Pb beam ($\sqrt{s_{NN}} = 72 \text{ GeV}$)			
	Target	Target		L	σ_{inel}	Inel	$\int \mathcal{L}$	L		Inal	ſŗ
						rate					
ALICE FT Luminosities comparable with nominal LHC luminosities						[kHz]		$[cm^{-2} s^{-1}]$		[kHz]	
		Gas-Jet	H^{\uparrow}	4.3 ×10 ³⁰	39 mb	168	43 pb ⁻¹	5.6×10^{26}	1.8 b	1	0.56 nb ⁻¹
			H ₂	2.6×10^{31}	39 mb	1000	0.26 fb ⁻¹	2.8×10^{28}	1.8 b	50	28 nb ⁻¹
			\mathbf{D}^{\uparrow}	4.3×10^{30}	72 mb	309	43 pb ⁻¹	5.6×10^{26}	2.2 b	1.2	0.56 nb ⁻¹
	Internal		³ He [†]	8.5 ×10 ³⁰	117 mb	1000	85 pb ⁻¹	2.0×10^{28}	2.5 b	50	20 nb ⁻¹
	gas target		Xe	7.7 ×10 ²⁹	1.3 b	1000	7.7 pb ⁻¹	8.1×10 ²⁷	6.2 b	50	8.1 nb ⁻¹
	8	Storage Cell	H^{\uparrow}	2.6×10^{31}	39 mb	1000	0.26 fb ⁻¹	2.8×10^{28}	1.8 b	50	28 nb ⁻¹
			H ₂	2.6×10^{31}	39 mb	1000	0.26 fb ⁻¹	2.8×10^{28}	1.8 b	50	28 nb ⁻¹
			D	1.4×10^{31}	72 mb	1000	140 pb ⁻¹	2.2×10^{28}	2.2 b	50	22 nb ⁻¹
			³ He [†]	8.5 ×10 ³⁰	117 mb	1000	85 pb ⁻¹	2.0×10^{28}	2.5 b	50	20 nb ⁻¹
	_		Xe	7.7 ×10 ²⁹	1.3 b	1000	7.7 pb ⁻¹	8.1×10 ²⁷	6.2 b	50	8.1 nb ⁻¹
	Internal solid tar	Wire Target	C (500 µm)	2.8×10^{30}	271 mb	760	28 pb ⁻¹	5.6×10^{26}	3.3 b	1.8	0.56 nb ⁻¹
	get with		Ti (500 μm)	1.4×10^{30}	694 mb	971	14 pb ⁻¹	2.8×10^{26}	4.7 b	1.3	0.28 nb ⁻¹
	beam		W (184 μm)	5.9 ×10 ²⁹	1.7b	1000	5.9 pb ⁻¹	-	-	-	-
	halo		W (500 μm)	-	-	-	-	3.1×10^{26}	6.9 b	2.1	0.31 nb ⁻¹
		E1039	NH_3^{\uparrow}	2.6×10^{31}	39 mb	1000	0.26 fb ⁻¹	1.4×10^{28}	1.8 b	25	14 nb ⁻¹
			ND_3^{\uparrow}	1.4×10^{31}	72 mb	1000	140 pb ⁻¹	1.4×10^{28}	2.2 b	30	14 nb ⁻¹
	Beam	Unpol- arised solid target	C (658 μm)	3.7×10^{30}	271 mb	1000	37 pb ⁻¹	-	-	-	-
	splitting		C (5 mm)	-	-	-	-	5.6×10^{27}	3.3 b	18	5.6nb^{-1}
			Ti (515 μ m)	1.4×10^{30}	694 mb	1000	14 pb ⁻¹	-	-	-	-
			Ti (5 mm)	-	-	-	-	2.8×10^{27}	4.7 b	13	2.8 nb ⁻¹
			W(184 µm)	5.9 ×10 ²⁹	1.7b	1000	5.9 pb ⁻¹	-	-	-	-
			W(5 mm)	-	-	-	-	3.1×10^{27}	6.9 b	21	3.1 nb ⁻¹

Available Luminosities			LHCb								
				proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				Pb beam ($\sqrt{s_{NN}} = 72 \text{ GeV}$)			
_	Target			L	σ_{inel}	Inel rate	∫L	L	σ_{inel}	Inel rate	∫L
LHCb				[cm ⁻² s ⁻¹]		kHz		[cm ⁻² s ⁻¹]		kHz	
		Gas-Jet	H^{\uparrow}	4.3×10 ³⁰	39 mb	168	43 pb ⁻¹	5.6×10 ²⁶	1.8 b	1	0.56 nb ⁻¹
			H ₂	1.0×10^{33}	39 mb	40000	10 fb ⁻¹	1.18×10^{29}	1.8 b	212	118 nb ⁻¹
			\mathbf{D}^{\uparrow}	4.3×10^{30}	72 mb	309	43 pb ⁻¹	5.6 ×10 ²⁶	2.2 b	1.2	0.56 nb ⁻¹
			³ He [↑]	3.4×10^{32}	117 mb	40000	3.4 fb ⁻¹	4.7×10^{28}	2.5 b	118	47 nb ⁻¹
	Internal gas		Xe	3.1×10^{31}	1.3 b	40000	0.31 fb ⁻¹	2.3×10^{28}	6.2 b	186	23 nb ⁻¹
	target	Storage Cell	H^{\uparrow}	0.92×10^{33}	39 mb	35880	9.2 fb ⁻¹	1.18×10^{29}	1.8 b	212	118 nb ⁻¹
			H ₂	1.0×10^{33}	39 mb	40000	10 fb ⁻¹	1.18×10^{29}	1.8 b	212	118 nb ⁻¹
			\mathbf{D}^{\uparrow}	5.6×10^{32}	72 mb	40000	5.6 fb ⁻¹	8.82×10^{28}	2.2 b	194	88 nb ⁻¹
			³ He [↑]	1.3×10^{33}	117 mb	40000	13 fb ⁻¹	8.25×10^{28}	2.5 b	206	83 nb ⁻¹
			Xe	3.1×10^{31}	1.3 b	40000	0.31 fb ⁻¹	3.0×10 ²⁸	6.2 b	186	30 nb ⁻¹
	Internal	Wire Target	C (500 µm)	2.8×10^{30}	271 mb	760	28 pb ⁻¹	5.6×10 ²⁶	3.3 b	1.8	0.56 nb ⁻¹
	on beam		Ti (500 μm)	1.4×10^{30}	694 mb	972	14 pb ⁻¹	2.8×10^{26}	4.7 b	1.3	0.28 nb ⁻¹
	halo		W (500 µm)	1.6×10^{30}	1.7 b	2720	16 pb ⁻¹	3.1×10^{26}	6.9 b	2.1	0.31 nb ⁻¹
		E1039	NH_3^{\uparrow}	7.2×10^{31}	39 mb	2808	0.72 fb ⁻¹	1.4×10^{28}	1.8 b	25	14 nb ⁻¹
	Paam		ND_3^{\uparrow}	7.2×10^{31}	72 mb	5100	0.72 fb ⁻¹	1.4×10^{28}	2.2 b	30	14 nb ⁻¹
	splitting	Unpol- arised solid	C (5 mm)	2.8×10^{31}	271 mb	7600	280 pb ⁻¹	5.6×10^{27}	3.3 b	18	5.6 nb ⁻¹
	1		Ti (5 mm)	1.4×10^{31}	694 mb	9720	140 pb ⁻¹	2.8×10^{27}	4.7 b	13	2.8 nb ⁻¹
		target	W (5 mm)	1.6×10^{31}	1.7 b	27200	160 pb ⁻¹	3.1 ×10 ²⁷	6.9 b	21	3.1 nb ⁻¹

Physics opportunities in AFTER @ LHC

Physics opportunities of a fixed-target experiment using LHC beams Physics Reports 522 (2013) 239

Ideas for a fixed target experiment at LHC in a Special Issue in Advances in High Energy Physics:

Advances in High Energy Physics, Volume 2015 (2015)

- Heavy-ion physics
- Exclusive reactions
- Spin physics studies
- Hadron structure
- Feasibility study and technical ideas

Drell-Yan production

Test o factorization of initial state effects in A+A

Drell Yan:

Few Body Syst. 58 (2017) no.4, 139

- initial state production, not significant interaction with nuclear medium
- ideal test of the extrapolation of initial state effects in pA to AA

$J\!/\psi$ and Υ yields

Typically 10⁹ charmonia, 10⁶ bottomonia per year

Quarkonium in "cold" and "hot" mater studies

Determination of thermodynamic properties of QGP + cold nuclear matter effects with Υ (nS) production in pp, pA, AA

STRANGENESS SIMULATED PERFORMANCE

- * Pythia8 minbias simulation, pp collisions, $\sqrt{s} = 115 \text{ GeV}$
- L_{int} = 45 pb⁻¹ with polarised H (1 year of data taking)
 Additional factor 10 if unpolarised H₂
- 10 x 10⁶ events generated
- PID &Tracking inefficiencies + decay product geometrical acceptance not accounted for
- Pseudo-rapidity of the Λ within TPC (IROC only) + TOF coverage
- ✤ p_T(Λ) > 0.5 GeV/c

Very large yields of Λ produced in the central barrel acceptance (to be converted into an uncertainty on D_{LL}) *caveat the tracking performances of the TPC and effect of material budget for large negative Z has still to be studied

L. Massacrier, Physics Beyond Colliders annual workshop, CERN, 2017, https://indico.cern.ch/event/644287/contributions/2724478/